设为首页 | 收藏本站












MASTA 软件基于独特的C语言平台架构


运用零部件和设计数据库的综合选择 设计整个传动系统和动力传动系统

















MASTA is made up of a core module and over 75 additional modules with additional design components & advanced analysis functionality, MASTA can be highly tailored to specific user or industry requirements.

Core Module Functionality

 The core module provides a CAE environment for the design of gearbox & transmission systems using shafts, bearings & cylindrical gears.

Design features in the core module include:

  • 2D design view with interactive 3D view

  • Comprehensive bearing database with over 44,000 bearings in the catalogue

  • Add cylindrical gears, shafts, bearings, clutches, synchronisers, splines & other couplings

  • Specify power and point loads and configure load cases and duty cycles

  • Edit shaft profiles including using imported 2D CAD drawing (.dwg/.dxf)

Analysis features in the core module include:

  • Power flow

  • System deflection

  • Cylindrical gear loading and misalignments

  • Cylindrical gear rating to ISO 6336,   DIN 3990 and AGMA 2101-D04

  • Bearing loading and misalignments

  • Bearing rating to ISO 76, ISO 281 and ISO/TS 16281

  • Shaft fatigue analysis & rating to DIN 743, AGMA or SMT

  • Macro geometry optimisation for strength or contact ratio

Features in MASTA

The next generation in commercial grade CAE design, analysis and optimisation for mechanical transmissions

Below summarizes the major updates in tbe latest release of MASTA. For further details get in touch.


Full FE Mesh reduction and Analysis

  • New module for import a full FE mesh of a housing or shaft and then perform a condensation on this model within MASTA

  • Results for the full FE model may be expanded in MASTA to view stresses, deflections, mode shapes and energy content

  • Key features include:

    • Importing Full FE models to MASTA

    • Performing stiffness and mass reduction in MASTA

    • View deflections, stresses and strains following a System Deflection analysis in MASTA

    • Expand FE results to view mode shapes and modal energy content following an NVH analysis in MASTA

Tooth Interior Fatigue Fracture (TIFF)

Allows users to predict crack initiation risk for TIFF based on the method of MackAldener. The module uses results from MASTA’s Loaded Tooth Contact Analyses and visualises the internal stress and fatigue stress.

Understanding of such a failure is becoming more essential to transmission development and optimisation can now be made early on in the design stage.


Loaded Tooth Contact Analysis Enhancements

A number of developments have been included regarding MASTA’s Loaded Tooth Contact Analysis. In particular:

  • Including the effect of extended, off line of action, tip contact for both spur and helical gears

  • Including the rim and web in the FE model for Advanced LTCA analyses

  • Adding a number of further analysis results to the contact chart

  • Additionally it is now possible to fix the Contact Chart scale to facilitate comparison between results

  • A new option is available to run the LTCA analysis only for the first planetary mesh (i.e. the first planet angle)

More Features

Plunge Shaving Dynamics

A new module that enables simulation of the shaving force variation from the gear tip to root according to the shaving method, which determines whether the tooth profile will have additional profile/lead error

Hobbing Process Simulation

This newly revised and updated module considers the variety of static errors in the machining process for gear hobbing. The process simulation module can reproduce the gear geometry, including deviations, under the manufacturing conditions

Enhanced Mesh Coefficient of Friction Options for Power Loss/Efficiency Calculation

New Coefficient of Friction calculation methods are now available in addition to the previously available ISO/TR 14179-1:2001 method

Gear Flank Loading INDICATOR

Indication of which are the loaded gear flanks. In Powerflow mode you can visualise flank loading in both 2D and 3D Views. In other modes the option is available in 2D View

Inclusion of the Effect of Shot Peening on ISO Calculated Gear Bending Stresses

For ISO gear materials specify that a material is shot peened and then specify a Shot Peening Bending Stress Benefit percentage for inclusion in the gear rating

Gear Tolerance Standards

  • When performing cylindrical gear rating to AGMA 2101-D04 it is now possible to specify to use the AGMA 2000-A88 and ANSI/AGMA ISO 1328-1-B14 Tolerance Standards in addition to the existing AGMA 2015-1-A01 standard

  • When performing cylindrical gear rating to ISO 6336 it is now possible to specify to use the ISO 1328-1:2013(E)/ISO 1328-2:1997(E) Tolerance Standard in addition to the existing ISO 1328-1:1995(E)/ISO 1328-2:1997(E) standard

  • It is possible to select the Tolerance Rounding System to be Metric or Imperial

Bevel/Hypoid Gear Misalignments

Include a table of misalignments calculated with respect to the gear mesh point in addition to the previous results that are calculated with respect to the cross point

Improved CAD Reports

  • CAD reports have been enhanced from previous releases and now include the ability to add more data and information in CAD Gear Data Sheets

    • Include images with property labels where values are updated to reflect the design/analysis values.

    • Specify the CAD report template

Roller Bearing Improvements

Include user-specified X, Y factors for Dynamic Equivalent Load calculation for cylindrical roller bearings which can take axial load in addition to estimated factors.

LDP Import

Bring in basic design from LDP. This initial implementation is limited to internal or external cylindrical gear pairs and only macro geometry is currently imported.

FE Component Node Connection Report

Three new tables are included in the default report for an imported FE component in Design mode that show the expected and actual locations of the FE nodes on the connected component as an aid to assess the accuracy of the imported FE

Bearing Node Alignment with Imported FE

Specify whether FE condensation nodes for the bearings have been created at the centre of the bearing or at the centre of the bearing race. This is especially useful for bearings such as taper roller bearings where the race of the bearing is not always the full width of the bearing

Cylindrical Gear Misalignment Calculation Methods

Cylindrical gear misalignment calculations based on alternative misalignment definitions

AGMA Rating using LTCA Calculated Values

Use LTCA Stresses when performing gear rating according to AGMA 2101-D04 in Micro Geometry mode by selecting the option at the bottom of the AGMA rating options in the Cylindrical Gear Rating section of the Settings

Welding/Structural Factor

A new option to specify the Welding/Structural Factor, Xw, as used in scuffing calculations

Full release notes are available on request or from the SMT Portal.




  • 基于AGMA 925-A03 或 ISO/TR 13989进行圆柱齿轮胶合分析

  • 圆柱齿轮齿根应力分析

  • 基于Gleason或AGMA 2005 – C96 (设计) / 2003 – B97 (校核)进行螺旋锥齿轮设计和校核

  • 基于Gleason或2003 – B97 进行零度锥齿轮设计和校核

  • 直齿锥齿轮设计和校核

  • 准双曲面齿轮设计和校核

  • 基于GB10085, GB10087 和 GB10088进行蜗轮蜗杆设计

  • 克林格恩贝格齿轮设计和强度校核

  • 基于KN 3029 (设计) 和 KN 3030(强度校核)进行准双曲面齿轮设计和强度校核

  • 基于KN   3028 (设计) 和 KN 3030 (强度校核) 的螺旋锥齿轮设计和强度校核

  • 行星齿轮设计

  • 传动带、链、液力变矩器、CVT、联轴器设计

  • 基于DIN 7190进行紧配合设计和尺寸设计

  • 花键设计和强度校核-基于DIN 5480, GB/T 3478, ISO 4156, JIS B1603 和 SAE(ANSI B92.1)进行花键设计;基于 SAE设计指南进行花键强度校核


  • 微观修形;对轮齿自动进行网格化分或采用基于有限元/赫兹公式的LTCA进行分析

  • 轮齿加载接触分析

  • 圆柱齿轮、螺旋锥齿轮或准双曲面齿轮

  • 行星齿轮

  • 参数研究工具

  • 传递效率分析-根据 ISO/TR 14179-1 计算轴承、齿轮和密封件的功率损失

  • 轴承高级分析

  • 高级系统变形

  • NVH分析和模拟(基于有限元动力学模型,对于壳体和异形轴,通过从有限元软件(ANSYS/NASTRAN)导入浓缩刚度矩阵和质量矩阵,建立完全的动力学模型,进行耦合系统模态分析,根据MASTA计算得到或用户输入的TE,进行系统响应的齿轮啸叫分析,在设计阶段即可发现并解决潜在的NVH问题


  • 通过与有限元软件的接口将差壳和异型轴的刚度矩阵和三维模型导入MASTA

    • 系统分析时考虑壳体刚度对齿轮轴承运行错位量的影响

    • 进行异形轴变形和应力分析

  • 支持从有限元软件(ANSYS/NASTRAN)导入浓缩刚度矩阵和质量矩阵


  • 圆柱齿轮滚、插、剃、磨模拟

  • 圆柱齿轮插齿刀或滚齿刀轮廓与刀尖优化,得到最大齿轮弯曲强度

  • 圆柱齿轮滚齿、插齿、剃齿工艺模拟,在精确考虑齿坯误差,机床精度,刀具误差以及加工用量的影响情况下

    • 预测加工后齿轮的齿廓、齿向和周节误差

    • 以图形和 ISO1328/AGMA 2015标准精度等级两种形式报告

  • 螺旋锥齿轮和准双曲面齿轮制造

    • 机床调整参数、刀具优化

    • 齿轮齿面形状模拟和优化

经理   手机号码:19117201993   联系邮箱:charles.qi@zcplm.com
刘经理    机号码:13585505956   联系邮箱:support@zcplm.com
董经理    手机号码:13080907469   联系邮箱:jerry.dong@zcplm.com
姓名 Name
电话 Phone
信息 Information